PIP[subscript 3] Regulates Spinule Formation in Dendritic Spines during Structural Long-Term Potentiation
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
منابع مشابه
Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation.
Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to ...
متن کاملActivity-dependent spine morphogenesis: a role for the actin-capping protein Eps8.
Neuronal activity regulates the formation and morphology of dendritic spines through changes in the actin cytoskeleton. However, the molecular mechanisms that regulate this process remain poorly understood. Here we report that Eps8, an actin-capping protein, is required for spine morphogenesis. In rat hippocampal neurons, gain- and loss-of-function studies demonstrate that Eps8 promotes the for...
متن کاملMatrix Metalloproteinases Regulate the Formation of Dendritic Spine Head Protrusions during Chemically Induced Long-Term Potentiation
Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs), a family of extracellularly acting and Zn(2+)-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs) are filopodia-like processes th...
متن کاملEarly structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in stria...
متن کاملMyosin Learns to Recruit AMPA Receptors
The induction of long-term potentiation (LTP) leads to an increase in the density of AMPA receptors at dendritic spines. New work by Wang et al. (2008) reveals the mechanism by which myosin Vb regulates the intracellular trafficking of AMPA receptors from recycling endosomes to synaptic sites during LTP.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013